lunes, 28 de marzo de 2022

EL PROCESO DE DISEÑO - Especificaciones de desempeño

Cuando se entiende el antecedente y se plantea el objetivo con claridad, se está listo para formular un conjunto de especificaciones de desempeño (también llamado especificaciones de tareas). Éstas no deberán ser especificaciones de diseño. La diferencia es que las especifi caciones de desempeño definen lo que el sistema debe hacer, mientras que las especificaciones de diseño definen cómo debe hacerse. En esta etapa del proceso de diseño no es prudente intentar especificar cómo se tiene que lograr el objetivo. Esto se deja para la fase de ideación. El propósito de las especificaciones de desempeño es defi nir y limitar con cuidado el problema de modo que pueda ser resuelto y se puede mostrar lo que se resolvió después del hecho. En la tabla 1-2 se presenta un conjunto muestra de especificaciones de desempeño de nuestra “podadora de césped”.

Obsérvese que estas especifi caciones limitan el diseño sin restringir demasiado la libertad de diseño del ingeniero. Será inapropiado requerir un motor de gasolina conforme a la especificación 1, porque existen otras posibilidades que proporcionarán la movilidad deseada. Asimismo, demandar acero inoxidable para todos los componentes en la especificación 2 no sería prudente, puesto que se puede obtener resistencia a la corrosión mediante otros materiales menos onerosos. En suma, las especifi caciones de desempeño sirven para defi nir el problema de una manera tan completa y general como sea posible, y como una definición contractual de lo que se tiene que lograr. El diseño acabado puede ser probado en cuanto cumpla con las especificaciones.
Especificaciones de desempeño

lunes, 21 de marzo de 2022

EL PROCESO DE DISEÑO - Planteamiento de objetivos

 Una vez que se entiende por completo el antecedente del problema como originalmente se planteó, se estará listo para replantearlo en forma de enunciado de objetivos más coherentes. Este nuevo enunciado del problema deberá tener tres características. Deberá ser conciso, general e incoloro en cuanto a expresiones que predigan una solución. Deberá ser expresado en términos de visualización funcional, lo que signifi ca visualizar su función, en lugar de cualquier incorporación particular. Por ejemplo, si el enunciado original de la necesidad fue “Diseñar una mejor podadora de pasto” después de que por años se han investigado mil formas de cortar el pasto, el ingeniero docto podría replantear el objetivo como “Diseñar un medio de acortar el pasto”. El enunciado original del problema contiene una trampa incorporada en la forma de las palabras coloridas “podadora de césped”. Para la mayoría de las personas, esta frase les creará una visión de algo con aspas zumbantes y un motor ruidoso. Para que la fase de ideación sea más exitosa, es necesario evitar tales imágenes y plantear el problema general de manera clara y concisa. Como un ejercicio, mencione 10 maneras de cortar el césped. La mayoría de ellas no se le ocurrirían en caso de que le pidieran 10 diseños mejores de podadora de césped. ¡Debe utilizar visualización funcional para evitar la limitación innecesaria de su creatividad! 

viernes, 18 de marzo de 2022

EL PROCESO DE DISEÑO - Investigación preliminar

Ésta es la fase más importante del proceso, y desafortunadamente con mucha frecuencia la más ignorada. El término investigación, utilizado en este contexto, no debe conjurar visiones de científi cos de bata blanca mezclando sustancias en probetas. Más bien es una investigación más mundana, que reúne información de fondo sobre la física, química u otros aspectos pertinentes del problema. Además, es pertinente indagar si éste, o un problema similar, ya ha sido resuelto con anterioridad. No tiene caso reinventar la rueda. Si tiene suerte sufi ciente de encontrar en el mercado una solución ya obtenida, sin duda será más económica de adquirir que crear una solución propia. Es muy probable que éste no será el caso, pero puede aprender mucho sobre el problema investigando el “arte” existente asociado con tecnologías y productos similares. Muchas compañías adquieren, desarman y analizan los productos de sus competidores, un proceso en ocasiones conocido como “benchmarking”.

La literatura de patentes y las publicaciones técnicas en la materia son fuentes obvias de información y son vía accesible a la wide web. La U.S. Patent and Trademark Offi ce mantiene un sitio web en www.uspto.gov donde se pueden encontrar patentes por palabra clave, inventor, título, número de patente u otros datos. Se puede imprimir una copia de la patente desde el mismo sitio. Un sitio comercial en www.delphion.com también proporciona copias de patentes existentes, incluidas las publicadas en países europeos. Se requiere la sección de “revelación” o “especifi cación” de una patente para describir la invención con tal detalle que cualquier “versado en la materia” puede hacer la invención. A cambio de esta revelación total el gobierno otorga al inventor un monopolio durante 20 años sobre la invención. Una vez que ese plazo expira, cualquiera puede usarla. Es claro que, si se encuentra que existe la solución y está amparada por una patente en vigor, se tienen sólo algunas opciones éticas: adquirir la solución existente con el dueño de la patente, diseñar algo que no cree un confl icto con la patente, o desechar el proyecto.

Las publicaciones técnicas en ingeniería son numerosas y variadas y son provistas por un gran número de organizaciones profesionales. Para el objeto de este texto, la American Society of Mechanical Engineers (ASME), la cual ofrece membresías económicas para estudiantes, y la International Federation for the Theory of Machines and Mechanisms (IFToMM) poseen publicaciones pertinentes, el ASME Journal of Mechanical Design y el Mechanism and Machine Theory, respectivamente. Las bibliotecas escolares pueden estar suscritas a éstos, y es posible adquirir copias de artículos desde sus sitios web en www.asme.org/pubs/journals/ y www.elsevier.com/inca/publications, respectivamente.

La red mundial es un recurso increíblemente útil para el ingeniero o estudiante en busca de información sobre cualquier tema. Los muchos motores de búsqueda disponibles proporcionan un caudal de información en respuesta a las palabras clave seleccionadas. En la web es fácil encontrar fuentes de partes adquiridas tales como engranes, cojinetes y motores para diseñar máquinas. Además, mucha información de diseño de máquinas está disponible en la web. Varios sitios web útiles están catalogados en la bibliografía de este capítulo.

Es muy importante dedicar tiempo y energía sufi cientes en esta fase de investigación y preparación del proceso para evitar la turbación de encontrar una gran solución al problema equivocado. La mayoría de los ingenieros no experimentados (y algunos experimentados) prestan poca atención a esta fase y pasan con demasiada rapidez a la etapa de ideación e invención del proceso. ¡Esto debe evitarse! Hay que disciplinarse y no tratar de resolver el problema antes de estar perfectamente preparado para hacerlo.

lunes, 21 de febrero de 2022

EL PROCESO DE DISEÑO - Identificación de la necesidad

Este primer paso es realizado por alguien, jefe o cliente, al decir: “Lo que se necesita es…” Por lo general este enunciado será breve y sin detalles. Estará muy lejos de proporcionarle un planteamiento estructurado del problema. Por ejemplo, el enunciado del problema podría ser: “Se necesita una mejor podadora de pasto.”
Identificación de la necesidad

viernes, 18 de febrero de 2022

EL PROCESO DE DISEÑO - Diseño, invención, creatividad

Éstos son términos conocidos pero tienen diferentes signifi cados para diferentes personas. Pueden englobar un sinnúmero de actividades: el diseño de la ropa más moderna, la creación de obras arquitectónicas impresionantes, o la ingeniería de una máquina para la fabricación de toallas faciales. El diseño de ingeniería, el que aquí concierne, comprende estas tres actividades y muchas otras. La palabra diseño se deriva del latín designare, que signifi ca “diseñar” o “marcar”. El diccionario Webster proporciona varias defi niciones, la más adecuada para el caso es “bosquejar, grafi car o planifi car, como acción o trabajo… concebir, inventar-idear”. El diseño de ingeniería se ha defi nido como “[…] el proceso de aplicar las diversas técnicas y principios científi cos con el proposito de defi nir un dispositivo, un proceso o un sistema con sufi cientes detalles que permitan su realización […] El diseño puede ser simple o muy complejo, fácil o difícil, matemático o no matemático; puede implicar un problema trivial o uno de gran importancia”. El diseño es un constituyente universal de la práctica de ingeniería. No obstante, la complejidad de la materia por lo general requiere que el estudiante disponga de un conjunto de problemas estructurados, paso a paso ideados para esclarecer un concepto o conceptos particulares relacionados con el tema particular. Los problemas de los libros de texto en general adoptan la forma de “dados A, B, C y D, encuentre E”. Desafortunadamente, los problemas de ingeniería en la vida real casi nunca están estructurados de esa manera. Con frecuencia, en la realidad adoptan la forma de: “Lo que se necesita es un artefacto para insertar este artifi cio en el orifi cio dentro del tiempo asignado para la transferencia de este otro cachivache.” El ingeniero novel buscará en vano en sus libros de texto una guía para resolver semejante problema. Este problema no estructurado por lo general conduce a lo que comúnmente se llama “síndrome de papel en blanco”. Con frecuencia los ingenieros se encuentran con el problema de la hoja de papel en blanco, cavilando sobre la manera de resolver un problema mal defi nido como ése.

Mucha de la educación de ingeniería se ocupa de temas de análisis, lo que signifi ca descomponer, desarmar, descomponer en sus partes constituyentes. Esto es muy necesario. El ingeniero debe saber cómo analizar sistemas de varios tipos, mecánicos, eléctricos, térmicos o fl uidos. El análisis requiere un completo conocimiento tanto de las técnicas matemáticas apropiadas, como de la física fundamental de la función del sistema. Pero, antes de que cualquier sistema pueda ser analizado, debe existir, y una hoja de papel en blanco proporciona poca sustancia para el análisis. Así, el primer paso en cualquier ejercicio de diseño de ingeniería es el de síntesis, que signifi ca conjuntar.

El ingeniero de diseño, en la práctica, sin importar la disciplina, continuamente enfrenta el reto de estructurar problemas no estructurados. De manera invariable, el problema tal como es planteado al ingeniero está mal defi nido e incompleto. Antes de que se intente analizar la situación primero se debe defi nir con cuidado el problema, mediante un método preliminar de ingeniería, para garantizar que cualquier solución propuesta resolverá correctamente el problema. Existen muchos ejemplos de excelentes soluciones de ingeniería que al fi nal fueron rechazadas porque resolvían el problema de manera incorrecta, es decir, no resolvían el problema que el cliente realmente tenía.

Se ha investigado ampliamente la defi nición de varios “procesos de diseño” tratando de proporcionar los medios para estructurar un problema no estructurado y obtener una solución viable. Algunos de estos procesos presentan docenas de pasos, otros sólo unos cuantos. El presentado en la tabla 1-1 contiene 10 pasos y, por la experiencia del autor, ha demostrado que da buenos resultados en más de 40 años de práctica en el diseño de ingeniería.

Iteración Antes de discutir cada uno de estos pasos a detalle es necesario señalar que éste no es un proceso en el que se procede del paso uno al diez de un modo lineal. En su lugar, por su naturaleza, es un proceso iterativo en el cual se avanza de manera vacilante, dos pasos hacia delante y uno atrás. Es inherentemente circular. Iterar signifi ca repetir, regresar a un estado previo. Si, por ejemplo, lo que parece ser gran idea, al analizarla, resulta que viola la segunda ley de la termodinámica, ¡se puede regresar al paso de ideación y buscar otra mejor! O, si es necesario, regresar a uno de los primeros pasos en el proceso, quizás a la investigación de fondo y aprender más sobre el problema. Con el entendimiento de que la ejecución real del proceso implica iteración, por simplicidad, ahora se analizará cada paso en el orden listado en la tabla 1-1.
PROCESO DE DISEÑO

lunes, 14 de febrero de 2022

APLICACIONES DE LA CINEMÁTICA

Una de las primeras tareas al resolver cualquier problema de diseño de máquinas es determinar la confi guración cinemática necesaria para producir los movimientos deseados. En general, los análisis de fuerzas y esfuerzos no pueden ser realizados hasta que los problemas cinemáticos hayan sido resueltos. Este texto aborda el diseño de dispositivos cinemáticos tales como eslabonamientos, levas y engranes. Cada uno de estos términos será defi nido a cabalidad en capítulos subsiguientes, pero puede ser útil mostrar algunos ejemplos de aplicaciones cinemáticas en este capítulo introductorio. Probablemente el lector ha utilizado muchos de estos sistemas sin pensar en su cinemática.

Virtualmente cualquier máquina o dispositivo que se mueve contiene uno o más elementos cinemáticos, tales como eslabonamientos, levas, engranes, bandas, cadenas. La bicicleta puede ser un ejemplo simple de un sistema cinemático que contiene una transmisión de cadena para generar la multiplicación del par de torsión, y eslabonamientos operados por cables simples para el frenado. Un automóvil contiene muchos más dispositivos cinemáticos. Su sistema de dirección, la suspensión de las llantas y el motor de pistones contienen eslabonamientos; las válvulas del motor son abiertas por levas, y la transmisión tiene muchos engranes. Incluso los limpiaparabrisas son operados por eslabonamientos. La fi gura 1-1a muestra un eslabonamiento espacial utilizado para controlar el movimiento de la rueda trasera de un automóvil moderno al pasar sobre baches.

Equipos de construcción como tractores, grúas y retroexcavadoras utilizan extensamente eslabonamientos en su diseño. La fi gura 1-1b muestra una pequeña retroexcavadora cuyo eslabonamiento es propulsado por cilindros hidráulicos. Otra aplicación que utiliza eslabonamientos es la del equipo ejercitador como el mostrado en la fi gura 1-1c. Los ejemplos de la fi gura 1-1 son todos bienes de consumo que se pueden encontrar a diario. Muchos otros ejemplos cinemáticos se dan en el dominio de los elementos de producción, máquinas utilizadas para fabricar los diversos bienes de consumo que se utilizan. Es menos probable encontrarlos fuera del ambiente industrial. Una vez asimilados los términos y principios de la cinemática, el lector ya no podrá mirar cualquier máquina o producto sin distinguir sus aspectos cinemáticos.
ejemplos de dispositivos cinematicos