lunes, 21 de febrero de 2022

EL PROCESO DE DISEÑO - Identificación de la necesidad

Este primer paso es realizado por alguien, jefe o cliente, al decir: “Lo que se necesita es…” Por lo general este enunciado será breve y sin detalles. Estará muy lejos de proporcionarle un planteamiento estructurado del problema. Por ejemplo, el enunciado del problema podría ser: “Se necesita una mejor podadora de pasto.”
Identificación de la necesidad

viernes, 18 de febrero de 2022

EL PROCESO DE DISEÑO - Diseño, invención, creatividad

Éstos son términos conocidos pero tienen diferentes signifi cados para diferentes personas. Pueden englobar un sinnúmero de actividades: el diseño de la ropa más moderna, la creación de obras arquitectónicas impresionantes, o la ingeniería de una máquina para la fabricación de toallas faciales. El diseño de ingeniería, el que aquí concierne, comprende estas tres actividades y muchas otras. La palabra diseño se deriva del latín designare, que signifi ca “diseñar” o “marcar”. El diccionario Webster proporciona varias defi niciones, la más adecuada para el caso es “bosquejar, grafi car o planifi car, como acción o trabajo… concebir, inventar-idear”. El diseño de ingeniería se ha defi nido como “[…] el proceso de aplicar las diversas técnicas y principios científi cos con el proposito de defi nir un dispositivo, un proceso o un sistema con sufi cientes detalles que permitan su realización […] El diseño puede ser simple o muy complejo, fácil o difícil, matemático o no matemático; puede implicar un problema trivial o uno de gran importancia”. El diseño es un constituyente universal de la práctica de ingeniería. No obstante, la complejidad de la materia por lo general requiere que el estudiante disponga de un conjunto de problemas estructurados, paso a paso ideados para esclarecer un concepto o conceptos particulares relacionados con el tema particular. Los problemas de los libros de texto en general adoptan la forma de “dados A, B, C y D, encuentre E”. Desafortunadamente, los problemas de ingeniería en la vida real casi nunca están estructurados de esa manera. Con frecuencia, en la realidad adoptan la forma de: “Lo que se necesita es un artefacto para insertar este artifi cio en el orifi cio dentro del tiempo asignado para la transferencia de este otro cachivache.” El ingeniero novel buscará en vano en sus libros de texto una guía para resolver semejante problema. Este problema no estructurado por lo general conduce a lo que comúnmente se llama “síndrome de papel en blanco”. Con frecuencia los ingenieros se encuentran con el problema de la hoja de papel en blanco, cavilando sobre la manera de resolver un problema mal defi nido como ése.

Mucha de la educación de ingeniería se ocupa de temas de análisis, lo que signifi ca descomponer, desarmar, descomponer en sus partes constituyentes. Esto es muy necesario. El ingeniero debe saber cómo analizar sistemas de varios tipos, mecánicos, eléctricos, térmicos o fl uidos. El análisis requiere un completo conocimiento tanto de las técnicas matemáticas apropiadas, como de la física fundamental de la función del sistema. Pero, antes de que cualquier sistema pueda ser analizado, debe existir, y una hoja de papel en blanco proporciona poca sustancia para el análisis. Así, el primer paso en cualquier ejercicio de diseño de ingeniería es el de síntesis, que signifi ca conjuntar.

El ingeniero de diseño, en la práctica, sin importar la disciplina, continuamente enfrenta el reto de estructurar problemas no estructurados. De manera invariable, el problema tal como es planteado al ingeniero está mal defi nido e incompleto. Antes de que se intente analizar la situación primero se debe defi nir con cuidado el problema, mediante un método preliminar de ingeniería, para garantizar que cualquier solución propuesta resolverá correctamente el problema. Existen muchos ejemplos de excelentes soluciones de ingeniería que al fi nal fueron rechazadas porque resolvían el problema de manera incorrecta, es decir, no resolvían el problema que el cliente realmente tenía.

Se ha investigado ampliamente la defi nición de varios “procesos de diseño” tratando de proporcionar los medios para estructurar un problema no estructurado y obtener una solución viable. Algunos de estos procesos presentan docenas de pasos, otros sólo unos cuantos. El presentado en la tabla 1-1 contiene 10 pasos y, por la experiencia del autor, ha demostrado que da buenos resultados en más de 40 años de práctica en el diseño de ingeniería.

Iteración Antes de discutir cada uno de estos pasos a detalle es necesario señalar que éste no es un proceso en el que se procede del paso uno al diez de un modo lineal. En su lugar, por su naturaleza, es un proceso iterativo en el cual se avanza de manera vacilante, dos pasos hacia delante y uno atrás. Es inherentemente circular. Iterar signifi ca repetir, regresar a un estado previo. Si, por ejemplo, lo que parece ser gran idea, al analizarla, resulta que viola la segunda ley de la termodinámica, ¡se puede regresar al paso de ideación y buscar otra mejor! O, si es necesario, regresar a uno de los primeros pasos en el proceso, quizás a la investigación de fondo y aprender más sobre el problema. Con el entendimiento de que la ejecución real del proceso implica iteración, por simplicidad, ahora se analizará cada paso en el orden listado en la tabla 1-1.
PROCESO DE DISEÑO

lunes, 14 de febrero de 2022

APLICACIONES DE LA CINEMÁTICA

Una de las primeras tareas al resolver cualquier problema de diseño de máquinas es determinar la confi guración cinemática necesaria para producir los movimientos deseados. En general, los análisis de fuerzas y esfuerzos no pueden ser realizados hasta que los problemas cinemáticos hayan sido resueltos. Este texto aborda el diseño de dispositivos cinemáticos tales como eslabonamientos, levas y engranes. Cada uno de estos términos será defi nido a cabalidad en capítulos subsiguientes, pero puede ser útil mostrar algunos ejemplos de aplicaciones cinemáticas en este capítulo introductorio. Probablemente el lector ha utilizado muchos de estos sistemas sin pensar en su cinemática.

Virtualmente cualquier máquina o dispositivo que se mueve contiene uno o más elementos cinemáticos, tales como eslabonamientos, levas, engranes, bandas, cadenas. La bicicleta puede ser un ejemplo simple de un sistema cinemático que contiene una transmisión de cadena para generar la multiplicación del par de torsión, y eslabonamientos operados por cables simples para el frenado. Un automóvil contiene muchos más dispositivos cinemáticos. Su sistema de dirección, la suspensión de las llantas y el motor de pistones contienen eslabonamientos; las válvulas del motor son abiertas por levas, y la transmisión tiene muchos engranes. Incluso los limpiaparabrisas son operados por eslabonamientos. La fi gura 1-1a muestra un eslabonamiento espacial utilizado para controlar el movimiento de la rueda trasera de un automóvil moderno al pasar sobre baches.

Equipos de construcción como tractores, grúas y retroexcavadoras utilizan extensamente eslabonamientos en su diseño. La fi gura 1-1b muestra una pequeña retroexcavadora cuyo eslabonamiento es propulsado por cilindros hidráulicos. Otra aplicación que utiliza eslabonamientos es la del equipo ejercitador como el mostrado en la fi gura 1-1c. Los ejemplos de la fi gura 1-1 son todos bienes de consumo que se pueden encontrar a diario. Muchos otros ejemplos cinemáticos se dan en el dominio de los elementos de producción, máquinas utilizadas para fabricar los diversos bienes de consumo que se utilizan. Es menos probable encontrarlos fuera del ambiente industrial. Una vez asimilados los términos y principios de la cinemática, el lector ya no podrá mirar cualquier máquina o producto sin distinguir sus aspectos cinemáticos.
ejemplos de dispositivos cinematicos